A Facile Route to Bridgehead Disubstituted Bicyclo[1.1.1]pentanes Involving Palladium-Catalyzed Cross-Coupling Reactions

J. D. Daniel Rehm, [a] Burghard Ziemer, [a] and Günter Szeimies*[a]

Keywords: C-C coupling / Grignard reactions / Small-ring systems / Palladium catalysis

3-Alkylbicyclo[1.1.1]pent-1-yl Grignard reagents have been coupled with bromoarenes in the presence of catalytic amounts (0.8–2.0 mol.%) of $PdCl_2(dppf)$ in diethyl ether containing 1,4-dioxane as a co-solvent at room temperature. The yields of the coupling step range from 73% to 98%. By

using di- or tribromoarenes, coupling products of types 10 and 11 have been obtained. The X-ray structures of four model compounds (4a, 4d, 4j, 4n) have been determined, each of which shows a short, nonbonded C1–C3 distance in the bicyclo[1.1.1]pentyl subunit of about 1.89 Å.

Introduction

Ever since the facile access to [1.1.1]propellane (1) from the tetrahalide 2 became available, [1][2] the once tedious synthesis of the parent bicyclo[1.1.1]pentane (3)[3] and its derivatives [4] has been greatly simplified. 1,3-Disubstituted bicyclo[1.1.1]pentanes have been obtained by radical chain of numerous reagents to pellane $^{[5][6][7][8][9]}$ and further chemical modification of the substituents has led to a substantial increase in the number of known compounds of this type. The remarkably short C1-C3 distance of 1.86 Å in 3 and its derivatives is unprecedented for two carbon atoms that are not directly bonded. [10] Early theoretical investigations of 3[11] predicted "through bond" and "through space" interaction between the bridgehead carbons. Photoelectron spectroscopy of halogen- and alkynyl-substituted bicyclo[1.1.1]pentanes has shown the ability of these hydrocarbons to mediate electronic interactions. [12] These results make the bicyclo[1.1.1]pentane system an interesting entity for the study of electron-transfer and energy-transfer processes. To this end, a flexible synthetic procedure for a wide range of 1,3-disubstituted bicyclo[1.1.1]pentanes would be desirable, which, in spite of the aforementioned synthetic successes, has hitherto not been available. We now report on an efficient synthesis of 1-aryl-3-alkyl- and 1,3-diaryl-substituted bicyclo[1.1.1]pentanes 4, a key step of which is palladium-catalyzed coupling of a Grignard intermediate with an aryl bromide. [13]

Results and Discussion

Some time ago it was observed that ${\bf 1}$ could add Grignard reagents across the central C1-C3 bond. [14] A further study revealed that this reaction most probably proceeds by a radical chain mechanism and requires careful choice of solvent and reaction conditions. [15] In this investigation, tert-butylmagnesium chloride, cyclohexylmagnesium chloride, isopropylmagnesium chloride and phenylmagnesium bromide have been used as the Grignard reagents. These were allowed to react with [1.1.1]propellane in diethyl ether or, in the case of the latter reagent, in diethoxymethane for 2-6 days at room temperature under nitrogen. The intermediate Grignard reagent 5 (a: $R^1 = tert$ -butyl; b: $R^1 = cyclohexyl$; c: R^1 = isopropyl; d: R^1 = phenyl) was then mixed with the appropriate aryl bromide 6 and the catalyst and the reactions were allowed to proceed for 48 h at ambient temperature in diethyl ether and dioxane. Preceding investigations had shown that Ni(II) catalysts, which had proven successful in the Kumada coupling, [16] did not lead to the desired products in our case. Bis(acetonitrile)palladium dichloride [Pd(CH₃CN)₂Cl₂] and a 1:2 mixture of bis(dibenzylideneacetone)palladium(0) and tris(o-tolyl)phosphane [P(o-Tol)₃] were effective catalysts, but could not compete with [1,1'-bis(diphenylphosphanyl)ferrocene]palladium(II) dichloride [PdCl₂(dppf), 7], which gave the best results when added at a concentration of 1.3-3.0 mol.% with respect to the bromides 6. No biphenyls were found as side products.

Our results are presented in Table 1. The yields quoted are based on the aryl bromide used; it was assumed that the formation of propellane **1** from precursor **2** proceeded with 70% yield, [1][2] and that the addition of the Grignard

[[]a] Institut für Chemie, Humboldt Universität zu Berlin, Hessische Straße 1–2, D-10115 Berlin, Germany

reagent to 1 was effected quantitatively. Yields of 4 based on tetrahalide 2 are given in parentheses.

Table 1. Yields of $\bf 4$ from reactions of $\bf 5$ with aryl bromides $\bf 6$ catalyzed by $\bf 7$

Entry	$5, \mathbf{R}^1 =$	Ar-Br 6 ; Ar =	4	% Yield [a]	7 (mol.%) [b]
1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15	Bu Bu Bu Bu Bu Bu Bu Cy Pr Bu Bu Ph Ph	Ph 2-Naphthyl 4-Ph-C ₆ H ₄ 4-Cl-C ₆ H ₄ 4-CF ₃ -C ₆ H ₄ 3-CH ₃ O-C ₆ H ₄ 4-Cl-C ₆ H ₄ 4-Me ₃ Si-C ₆ H ₄ 4-Me ₃ Si-C ₆ H ₄ 3-Furanyl 2-Furanyl Ph 4-Cl-C ₆ H ₄ 4-CF ₃ -C ₆ H ₄	a b c d e f g h i j k l m n o	88 (37) 93 (42) 96 (43) 90 (40) 98 (44) 87 (34) 97 (37) 89 (38) 96 (40) 91 (36) 56 [c] (23) 48 [c] (21) 82 (49) 87 (39) 73 (39)	1.3 1.3 1.3 1.3 2.4 1.4 2.8 2.8 2.6 3.0 1.3 1.3 2.0 2.4 2.2

 $^{[a]}$ Isolated yields based on ArBr **6**; values in parentheses based on **2**. $^{[b]}$ Based on **6**. $^{[c]}$ 100% conversion of ArBr.

Table 1 shows that the coupling reaction is successful irrespective of the electronic nature of the substituent on the bromoaromatic compound. Thus, 1-bromo-4-(trifluoromethyl)benzene gives essentially the same result as 1-bromo-4methoxybenzene (entries 5 and 7). This is also true for 3bromofuran as compared with 2-bromopyridine (entries 11 and 12). The isolated yields of 4k and 4l were low, because these products partially decomposed during the workup procedure. Not unexpetedly, entries 4, 8 and 14 show that the halide selectivity of this reaction is remarkably high: the bromide reacts exclusively in each case. In addition, it is not surprising that the coupling reaction tolerates the presence of a trimethylsilyl group (entries 9 and 10). To accomplish the reaction within 48 h, in most cases 2.0 mol.% of catalyst 7 was sufficient; only in a few cases was a somewhat higher concentration of 7 necessary, but in no case was more than 3.0 mol.% required.

A particularly interesting aspect of this investigation was the use of di- and tribromobenzenes in attempts to find reaction conditions for successful di- and tri-coupling in good yields. When 5a was reacted with 1,3,5-tribromobenzene in a molar ratio of 3.5:1 in the presence of 4.6 mol.% of 7 (with respect to 1,3,5-tribromobenzene), a 1:1 mixture of 8a (37%) and 9a (42%) was obtained. However, with a 5:1 ratio of 5a to 1,3,5-tribromobenzene, only 8a was isolated in 98% yield. Under the same conditions, 5b was converted into 8b in 95% yield. 1,4-Dibromobenzene gave a 90% yield of **10a** upon reaction with **5a**, while an analogous reaction with 5c led to 10c in 93% yield. Using 1,3-dibromo-5-(trimethylsilyl)benzene, the yields of the reactions with 5a and 5b affording 11a and 11b were 76% and 89%, respectively. The catalyst was used at a level of 2.8-10 mol.% with respect to **6**.

The isolated yield of **12a**, prepared from 2,6-dibromopyridine and **5a**, was only 20%, despite the fact that the dibromide had been fully consumed within 24 h.

It is interesting to note that the coupling reactions of **5** with bromobenzenes are highly sensitive to steric congestion. Attempts to use 1,2-dibromobenzene or 1,2,5,6-tetrabromobenzene as coupling components did not lead to any products.

X-ray Structures of Selected Model Compounds 4

The structures of compounds **4a**, **4d**, **4j**, and **4n** were determined by X-ray diffraction analysis. Figure 1 shows the crystal structure of compound **4a**.

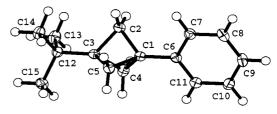


Figure 1. ORTEP plot of compound **4a**; 50% probability ellipsoids; selected bond lengths [Å] and angles [°]: C1-C3 1.8914(16), C1-C2 1.5459(17), C3-C12 1.5175(15), C1-C6 1.4925(15); C1-C2-C3 75.21(8), C5-C1-C2 86.81(9), C5-C1-C4 87.22(9), C12-C3-C2 127.19(11), C5-C1-C6-C7 89.75(15), C2-C1-C6-C7 28.44(16)

The bridgehead-to-bridgehead distance C1–C3 in **4a** amounts to 1.8914(16) Å, which is typical for bicyclo[1.1.1]-pentanes substituted with electron-donating groups. [18] The C1–C3 distances in **4d** [1.8966(20) Å], **4j** [1.8822(26) Å] and **4n** [1.8923(23) Å] differ only marginally. In **4a**, **4d**, and **4j**, the torsional angles C2–C1–C6–C7 are 28.44(16)°, 29.56(22)° and 29.49(29)°, respectively, which reflect a minimization of the steric interaction of the methylene bridges of the bicyclo[1.1.1]pentyl cages with the *ortho* protons of the aromatic rings.

Figure 2 shows the crystal structure of compound **4n** (hydrogens omitted for clarity), which elucidates the matter of the orientation of the two aryl substituents at C1 and C3 of the bicyclo[1.1.1]pentyl subunit. The observed torsional

angle C7-C6-C12-C17 is about 1°, showing that the inplane conformation is favored.

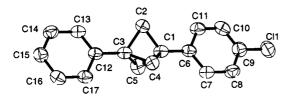


Figure 2. ORTEP plot of compound **4n**; 50% probability ellipsoids; selected bond lengths [Å] and angles [°]: C1-C3 1.892(7), C1-C2 1.552(7), C1-C6 1.486(5); C1-C2-C3 73.7(4), C7-C6-C12-C17 1.05(7)

Conclusion

In this report, we have surveyed the possibilities for cross-coupling bicyclo[1.1.1]pentylmagnesium halides with a variety of aryl bromides. The presented results show that palladium catalysis offers a viable means of synthesizing 1,3-disubstituted bicyclo[1.1.1]pentanes in high overall yields. This methodology will allow the synthesis of a wide range of new, hitherto inaccessible compounds.

Experimental Section

I. General Methods: ¹H-, ¹³C-, and ¹⁹F-NMR spectra were measured on a Bruker DPX300 spectrometer. — IR spectra were recorded on a Perkin–Elmer 881 spectrometer. — MS spectra were measured on an MSI Concept 1H apparatus. — Melting points were determined on a Büchi 530 apparatus and are uncorrected. — Elemental analyses were carried out by the Analytical Laboratory of the Institute of Chemistry at the Humboldt University.

1,1-Dibromo-2,2-bis(chloromethyl)cyclopropane (2), $^{[1][2]}$ [1.1.1]-propellane (1), $^{[1][2]}$ and dichloro[1,1'-bis(diphenylphosphanyl)ferrocene]palladium(II) [PdCl2(dppf), 7] $^{[17]}$ were prepared by literature methods. 3-Chloro-2-(chloromethyl)prop-1-ene and $\it tert$ -butylmagnesium chloride (2.0 $\rm M$ in diethyl ether) were purchased from Aldrich, isopropylmagnesium chloride and cyclohexylmagnesium chloride from Fluka, and an 8% solution of methyllithium (MeLi) in diethoxymethane from Chemetall. All reactions were carried out under nitrogen atmosphere.

II. Starting Materials

1-Bromo-4-(trimethylsilyl)benzene: n-Butyllithium (BuLi) (15.6 mL of a 1.60 M solution in hexane, 25.0 mmol) was added to a solution of 1,4-dibromobenzene (5.90 g, 25.0 mmol) in diethyl ether at $-78\,^{\circ}$ C. After 1 h at $0\,^{\circ}$ C, a solution of chlorotrimethylsilane (2.99 g, 27.5 mmol) in diethyl ether (10 mL) was added dropwise. The resulting mixture was stirred for 1 h at room temperature, and then water was added, the organic layer was separated in a separatory funnel, and the aqueous layer was extracted with n-pentane (2 \times 50 mL). The combined organic layers were washed twice with water, dried (MgSO₄), and the solvent was removed in vacuo, affording 1-bromo-4-(trimethylsilyl)benzene (5.60 g, 98%), which was used without further purification.

1,3-Dibromo-5-(trimethylsilyl)benzene: BuLi (15.6 mL of a 1.60 m solution in hexane, 25.0 mmol) was added to a solution of 1,3,5-tribromobenzene (7.87 g, 25.0 mmol) in diethyl ether at -78 °C. After 1 h at 0 °C, a solution of chlorotrimethylsilane (2.99 g,

27.5 mmol) in diethyl ether (10 mL) was added dropwise and the mixture was stirred for 1 h at room temperature. Water was then added, the organic layer was separated, and the aqueous layer was extracted with n-pentane (2 \times 50 mL). The combined organic layers were washed twice with water, dried (MgSO₄), and the solvent was removed in vacuo, affording 1,3-dibromo-5-(trimethylsilyl)benzene (6.70 g, 87%) as a slightly yellow solid of m.p. 39°C, which was used without further purification.

III. General Procedure for the Palladium-Catalyzed Coupling Reactions

(a) Preparation of Grignard Reagents 5a-c: To a solution of [1.1.1]propellane 1 in diethyl ether, obtained from 2 by treatment with 2.00 equiv. of MeLi according to ref. [1] (in an assumed yield of 70% based on 2), 1.00 equivalent (based on 1) of the appropriate Grignard reagent (a: *tert*-butylmagnesium chloride; b: cyclohexylmagnesium chloride; c: 2-propylmagnesium chloride) was added at 0°C. The resulting mixture was stirred for 48 h at room temperature. After this time, propellane 1 had been completely consumed and the Grignard reagents 5a-c had been formed quantitatively.

(b) Preparation of Grignard Reagent 5d: To a solution of [1.1.1]propellane **1** in diethoxymethane, obtained from **2** by treatment with 2.00 equiv. of MeLi according to ref. [1] (in an assumed yield of 70% based on **2**), 1.00 equivalent of phenylmagnesium bromide was added at 0° C. To remove impurities from the Grignard reagent prior to use, the ether solvent was removed in vacuo under nitrogen, the remaining waxy solid was washed three times with n-pentane, the pentane was removed using a syringe, and the solid was finally redissolved in diethoxymethane. After the addition of phenylmagnesium bromide to the solution of **1**, the mixture was stirred for 6 d at room temperature. After this time, propellane **1** had been completely consumed and the Grignard reagent **5d** had been formed quantitatively.

(c) Coupling Reactions: A solution of 5a, b, c or d was added to a mixture of $PdCl_2(dppf)$ and the aryl bromide in 1,4-dioxane (25 mL). The solution turned from red to yellow and was stirred for 48 h at room temperature. For workup, aqueous NH_4Cl was added, the organic layer was separated, and the aqueous layer was extracted with n-pentane (2 \times 50 mL). The combined organic layers were washed twice with water, dried with $MgSO_4$, and the solvent was removed in vacuo. The crude coupling product d was purified by flash chromatography on silica gel, eluting with d-pentane. The yields are based on the aryl bromide used.

1. Single Coupling Reactions

(3-tert-Butylbicyclo[1.1.1]pent-1-yl)benzene (4a): Tetrahalide 2 (5.00 g, 16.8 mmol) was converted into 1, which was allowed to react with tert-butylmagnesium chloride (10.8 mmol) according to the general procedure. Reaction of the solution of 5a with bromobenzene (1.10 g, 7.01 mmol) and $PdCl_2(dppf)$ (66 mg, 0.090 mmol) in 1,4-dioxane (25 mL) afforded, after standard workup and purification, 4a (1.23 g, 88% based on bromobenzene) as colorless needles (from acetone), m.p. $60\,^{\circ}$ C. $^{-1}$ H NMR (300 MHz, CDCl₃): $\delta = 0.89$ (s, 9 H), 1.82 (s, 6 H), 7.25 (m, 5 H). $^{-13}$ C NMR (75 MHz, CDCl₃): $\delta = 25.1$ (q, 4 C), 29.4 (s), 38.9 (s), 46.9 (s), 48.5 (t, 3 C), 126.0 (d), 126.1 (d, 2 C), 128.1 (d, 2 C), 141.9 (s). $^{-1}$ R (KBr): $\tilde{v} = 2959$ cm $^{-1}$, 2952, 2900, 2864, 1443, 1359, 1199, 746. $^{-1}$ MS (EI): m/z (%): 200 [M $^{+}$] (13), 142 (82), 123 (42), 57 (54). $^{-1}$ C₁₅H₂₀ (200.3): calcd. C 89.94, H 10.06; found C 89.90, H 10.18.

2-(3-*tert***-Butylbicyclo[1.1.1]pent-1-yl)naphthalene (4b):** Tetrahalide **2** (6.00 g, 20.2 mmol) was converted into **1**, which was allowed to react with *tert*-butylmagnesium chloride (13.0 mmol) according to the general procedure. Reaction of the solution of **5a** with 2-bromo-

naphthalene (1.86 g, 8.98 mmol) and $PdCl_2(dppf)$ (88 mg, 0.12 mmol) in 1,4-dioxane (25 mL) afforded, after standard workup and purification, **4b** (2.10 g, 93%) as a colorless solid of m.p. $101^{\circ}C$. ^{-1}H NMR (300 MHz, CDCl₃): $\delta=0.93$ (s, 9 H), 1.91 (s, 6 H), 7.40 (m, 3 H), 7.62 (s, 1 H), 7.85 (m, 3 H). ^{-13}C NMR (75 MHz, CDCl₃): $\delta=26.0$ (q, 3 C), 29.5 (s), 39.1 (s), 47.1 (s), 48.6 (t, 3 C), 124.3 (d), 124.7 (d), 125.2 (d), 126.0 (d), 127.6 (d), 127.7 (d), 132.1 (s), 133.3 (s), 139.3 (s). $^{-}$ IR (KBr): $\tilde{v}=2929$ cm $^{-1}$, 2900, 2862, 1459, 1360, 1200, 824, 796, 739. $^{-}$ MS (EI): m/z (%): 250 [M $^{+}$] (2), 193 (100), 178 (46), 165 (27), 152 (36), 55 (44), 41 (58). $^{-}$

4-(3-*tert*-**Butylbicyclo[1.1.1]pent-1-yl)biphenyl (4c):** Tetrahalide **2** (6.00 g, 20.2 mmol) was converted into **1**, which was allowed to react with *tert*-butylmagnesium chloride (13.0 mmol) according to the general procedure. Reaction of the solution of **5a** with 4-bromobiphenyl (2.10 g, 9.01 mmol) and PdCl₂(dppf) (88 mg, 0.12 mmol) in 1,4-dioxane (25 mL) afforded, after standard workup and purification, **4c** (2.40 g, 96%) as a colorless solid of m.p. 310 °C. $^{-1}$ H NMR (300 MHz, CDCl₃): $\delta = 0.91$ (s, 9 H), 1.86 (s, 6 H), 7.31–7.51 (m, 9 H). $^{-13}$ C NMR (75 MHz, CDCl₃): $\delta = 26.0$ (q, 3 C), 29.5 (s), 38.7 (s), 48.0 (s), 48.6 (t, 3 C), 126.5 (d), 126.9 (d), 128.7 (d), 139.2 (s), 141.0 (s). $^{-1}$ IR (KBr): $\bar{\nu} = 2930$ cm $^{-1}$, 2929, 2902, 1584, 1563, 1470, 1443, 1359, 1222, 1142, 764. $^{-1}$ MS (EI): m/z (%): 219 (100), 204 (20), 191 (19), 179 (14), 57 (14), 55 (21), 41 (24). $^{-1}$ C₂₁H₂₄ (276.4): calcd. C 91.25, H 8.75; found C 90.91, H 8.93.

1-(3-tert-Butylbicyclo[1.1.1]pent-1-yl)-4-chlorobenzene (4d): Tetrahalide 2 (6.00 g, 20.2 mmol) was converted into 1, which was allowed to react with tert-butylmagnesium chloride (13.0 mmol) according to the general procedure. Reaction of the solution of 5a 1-bromo-4-chlorobenzene (1.72 g,8.98 mmol) PdCl₂(dppf) (88 mg, 0.12 mmol) in 1,4-dioxane (25 mL) afforded, after standard workup and purification, 4d (1.90 g, 90%) as colorless needles (from acetone) of m.p. 78°C. - 1H NMR (300 MHz, CDCl₃): $\delta = 0.89$ (s, 9 H), 1.81 (s, 6 H), 7.12 (d, 2 H), 7.24 (d, 2 H). - ^{13}C NMR (75 MHz, CDCl_3): δ = 26.0 (q, 3 C), 29.4 (s), 38.5 (s), 46.9 (s), 48.6 (t, 3 C), 127.5 (d, 2 C), 128.2 (d, 2 C), 134.3 (s), 140.4 (s). – IR (KBr): $\tilde{v} = 2949 \text{ cm}^{-1}$, 2938, 2902, 2868, 1510, 1472, 1360, 1202, 1089, 789. – MS (EI): m/z (%): 199 (1), 177 (100), 142 (47), 83 (25), 57 (22), 41 (32). - C₁₅H₁₉Cl (234.8): calcd. C 76.74, H 8.16, Cl 15.10; found C 76.64, H 8.24, Cl 15.07.

1-(3-tert-Butylbicyclo[1.1.1]pent-1-yl)-4-(trifluoromethyl)benzene (4e): Tetrahalide 2 (5.00 g, 16.8 mmol) was converted into 1, which was allowed to react with tert-butylmagnesium chloride (10.8 mmol) according to the general procedure. Reaction of the solution of 5a with 1-bromo-4-(trifluoromethyl)benzene (1.69 g, 7.50 mmol) and PdCl₂(dppf) (132 mg, 0.18 mmol) in 1,4-dioxane (25 mL) afforded, after standard workup and purification, 4e (1.98 g, 98%) as colorless needles (from acetone) of m.p. 95°C. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.91$ (s, 9 H), 1.86 (s, 6 H), 7.30 (d, 2 H), 7.53 (d, 2 H). - ¹³C NMR (75 MHz, CDCl₃): $\delta = 25.9$ (q, 3 C), 29.4 (s), 38.7 (s), 47.1 (s), 48.6 (t, 3 C), 125.1 (d, 2 C), 125.5 (q), 126.4 (d, 2 C), 129.8 (s), 145.8 (s). – IR (KBr): $\tilde{v} = 2970$ cm^{-1} , 2959, 2937, 2906, 2868, 1615, 1475, 1406, 1363, 1202, 1065, 858 cm $^{-1}$. – MS (EI): m/z (%): 211 (37), 109 (24), 83 (35), 71 (23), 69 (28), 57 (100), 55 (49), 43 (45), 41 (49). $-C_{16}H_{19}F_3$ (268.3): calcd. C 71.62, H 7.14; found C 71.67, H 7.36.

1-(3-*tert***-Butylbicyclo[1.1.1]pent-1-yl)-3-methoxybenzene (4f):** Tetrahalide **2** (7.50 g, 25.3 mmol) was converted into **1**, which was allowed to react with *tert*-butylmagnesium chloride (15.0 mmol) according to the general procedure. Reaction of the solution of **5a**

with 3-bromo-1-methoxybenzene (1.87 g, 10.0 mmol) and PdCl₂(dppf) (103 mg, 0.14 mmol) in 1,4-dioxane (25 mL) afforded, after standard workup and purification, **4f** (2.00 g, 87%) as a colorless solid of m.p. 35 °C. $^{-1}$ H NMR (300 MHz, CDCl₃): $\delta = 0.90$ (s, 9 H), 1.81 (s, 6 H), 3.78 (s, 3 H), 6.73 (m, 1 H), 6.80 (m, 1 H), 7.21 (t, 2 H). $^{-13}$ C NMR (75 MHz, CDCl₃): $\delta = 26.0$ (q, 3 C), 29.4 (s), 38.9 (s), 46.8 (s), 48.5 (t, 3 C), 55.2 (q), 111.6 (d), 111.8 (d), 118.5 (d), 129.1 (d), 143.6 (s), 159.5 (s). $^{-1}$ IR (KBr): $\tilde{\nu} = 2970$ cm $^{-1}$, 2960, 2905, 2868, 1610, 1580, 1430, 1313, 1200, 1178, 1049, 777. $^{-1}$ MS (EI): m/z (%): 230 (1), 215 (1), 173 (100), 158 (35), 91 (30), 77 (24), 55 (53), 29 (39). $^{-1}$ C $_{16}$ H $_{22}$ O (230.4): calcd. C 83.43, H 9.63; found C 83.19, H 9.58.

1-(3-*tert*-**Butylbicyclo[1.1.1]pent-1-yl)-4-methoxybenzene (4g):** Tetrahalide **2** (5.00 g, 16.8 mmol) was converted into **1**, which was allowed to react with *tert*-butylmagnesium chloride (10.8 mmol) according to the general procedure. Reaction of the solution of **5a** with 4-bromo-1-methoxybenzene (1.22 g, 6.52 mmol) and PdCl₂(dppf) (136 mg, 0.19 mmol) in 1,4-dioxane (25 mL) afforded, after standard workup and purification, **4g** (1.45 g, 97%) as a colorless solid of m.p. 83 °C. $^{-1}$ H NMR (300 MHz, CDCl₃): $\delta = 0.89$ (s, 9 H), 1.79 (s, 6 H), 3.79 (s, 3 H), 6.81 (d, 2 H), 7.13 (d, 2 H). $^{-13}$ C NMR (75 MHz, CDCl₃): $\delta = 26.0$ (q, 3 C), 29.4 (s), 38.4 (s), 46.7 (s), 48.6 (t, 3 C), 55.3 (q), 113.5 (d, 2 C), 124.7 (d, 2 C), 134.3 (s), 158.1 (s). $^{-1}$ IR (KBr): $\tilde{\nu} = 2901$ cm $^{-1}$, 2863, 2836, 1610, 1516, 1497, 1360, 1294, 1188, 1131, 1034, 839. $^{-1}$ MS (EI): m/z (%): 214 (5), 199 (60), 57 (71), 41 (100), 15 (67). $^{-1}$ C $_{16}$ H₂₂O (230.4): calcd. C 83.43, H 9.63; found C 83.56, H 9.58.

4-Chloro-1-(3-cyclohexylbicyclo[1.1.1]pent-1-yl)benzene (4h): The general procedure was followed. Starting from tetrahalide 2 (4.50 g, 15.2 mmol), propellane 1 was converted into Grignard reagent 5b by reaction with cyclohexylmagnesium chloride (9.00 mmol). The coupling reaction of **5b** with 1-bromo-4-chlorobenzene (1.24 g, 6.48 mmol) and $PdCl_2(dppf)$ (132 mg, 0.18 mmol) in 1,4-dioxane (25 mL) afforded **4h** (1.51 g, 89%) as a white solid of m.p. 70°C. - ¹H NMR (300 MHz, CDCl₃): $\delta = 0.90-1.80$ (m, 11 H), 1.80 (s, 6 H), 7.14 (d, 2 H), 7.22 (d, 2 H). – ¹³C NMR (75 MHz, CDCl₃): $\delta = 26.1$ (t), 26.3 (t, 2 C), 29.3 (t, 2 C), 37.9 (d), 40.2 (s), 42.6 (s), 49.9 (t, 3 C), 127.5 (d, 2 C), 128.1 (d, 2 C), 131.9 (s), 140.4 (s). -IR (KBr): $\tilde{v} = 2963 \text{ cm}^{-1}$, 2915, 2907, 2866, 2850, 1486, 1445, 1271, 1259, 1160, 1089, 1013, 834. – MS (EI): m/z (%): 177 (36), 142 (29), 141 (43), 139 (69), 67 (50), 55 (53), 41 (100), 39 (60), 29 (40), 27 (48). - C₁₇H₂₁Cl (260.8): calcd. C 78.29, H 8.12, Cl 13.59; found C 78.23, H 8.31, Cl 14.04.

1-(3-Cyclohexylbicyclo[1.1.1]pent-1-yl)-4-(trimethylsilyl)benzene (4i): The general procedure was followed. Starting from tetrahalide 2 (5.00 g, 16.8 mmol), propellane 1 was converted into Grignard $\label{eq:continuous} \mbox{reagent} \ \ \ \mbox{\bf 5b} \ \ \mbox{by} \ \ \mbox{reaction} \ \ \mbox{with} \ \ \mbox{cyclohexylmagnesium} \ \ \mbox{chloride}$ (10.8 mmol). The coupling reaction of **5b** with 1-bromo-4-(trimethylsilyl)benzene (1.60 g, 6.98 mmol) and PdCl₂(dppf) (132 mg, 0.18 mmol) in 1,4-dioxane (25 mL) afforded 4i (2.01 g, 96%) as a white solid of m.p. 62 °C. - ¹H NMR (300 MHz, CDCl₃): $\delta = 0.25$ (s, 9 H) 0.75-1.70 (m, 11 H), 1.82 (s, 6 H), 7.21 (d, 2 H), 7.45 (d, 2 H). $- {}^{13}$ C NMR (75 MHz, CDCl₃): $\delta = -1.1$ (q, 3 C), 26.1 (t), 26.3 (t, 2 C), 29.3 (t, 2 C), 38.0 (d), 40.6 (s), 42.9 (t, 3 C), 125.5 (d, 2 C), 133.1 (d, 2 C), 137.8 (s), 142.4 (s). – IR (KBr): $\tilde{v} = 2955$ cm^{-1} , 2920, 2901, 2862, 2850, 1444, 1271, 1258, 1246, 1108, 850, 828. – MS (EI): m/z (%): 298 [M⁺] (1), 224 (18), 215 (23), 177 (26), 175 (19), 149 (15), 73 (100). - C₂₀H₃₀Si (298.544): calcd. C 80.46, H 10.13; found C 80.09, H 10.13.

 $\begin{array}{lll} \hbox{\bf 1-(3-Isopropylbicyclo[1.1.1]pent-1-yl)-4-(trimethylsilyl)benzene} & \hbox{\bf (4j):} \\ \hbox{The general procedure was followed. Starting from tetrahalide 2} \\ \hbox{\bf (4.50~g,~15.2~mmol), propellane~1~was converted into Grignard re-} \\ \end{array}$

agent **5c** by reaction with isopropylmagnesium chloride (9.00 mmol). The coupling reaction of **5c** with 1-bromo-4-(trimethylsilyl)benzene (1.39 g, 6.06 mmol) and PdCl₂(dppf) (132 mg, 0.18 mmol) in 1,4-dioxane (25 mL) afforded **4j** (1.42 g, 91%) as white needles (from acetone) of m.p. 35 °C. $^{-1}$ H NMR (300 MHz, CDCl₃): $\delta=0.25$ (s, 9 H), 0.88 (d, 6 H), 1.73 (m, 1 H), 1.82 (s, 6 H), 7.24 (d, 2 H), 7.48 (d, 2 H). $^{-13}$ C NMR (75 MHz, CDCl₃): $\delta=-1.1$ (q, 3 C), 18.9 (q, 2 C), 28.4 (d), 43.6 (s), 46.3 (s), 49.6 (t, 3 C), 125.5 (d, 2 C), 133.2 (d, 2 C), 137.9 (s), 142.4 (s). $^{-1}$ IR (KBr): $\tilde{\nu}=2981$ cm $^{-1}$, 2959, 2907, 2866, 1463, 1362, 1246, 1173, 1102, 858, 829. $^{-1}$ MS (EI): m/z (%): 175 (14), 73 (100), 59 (14), 45 (12), 43 (16), 41 (18). $^{-1}$ C $^{-1}$ H $^{-1}$ H $^{-1}$ C C $^{-1}$ H $^{-1}$ C (%): calcd C 79.00, H 10.14; found C 78.97, H 10.16.

3-(3-*tert***-Butylbicyclo[1.1.1]pent-1-yl)furan (4k):** The general procedure was followed. Starting from tetrahalide **2** (5.00 g, 16.8 mmol), propellane **1** was converted into Grignard reagent **5a** by reaction with *tert*-butylmagnesium chloride (10.8 mmol). The coupling reaction of **5a** with 3-bromofuran (1.03 g, 7.01 mmol) and PdCl₂(dppf) (66 mg, 0.090 mmol) in 1,4-dioxane (25 mL) afforded **4k** (750 mg, 56%) as a colorless solid of m.p. 29 °C. – ¹H NMR (300 MHz, CDCl₃): δ = 0.87 (s, 9 H), 1.76 (s, 6 H), 6.27 (s, 1 H), 7.20 (s, 1 H), 7.32 (s, 1 H). – ¹³C NMR (75 MHz, CDCl₃): δ = 25.9 (q, 3 C), 29.5 (s), 31.6 (s), 45.1 (s), 49.0 (t, 3 C), 109.7 (d), 126.1 (d), 138.8 (d), 142.8 (s). – IR (KBr): \tilde{v} = 2959 cm⁻¹, 2958, 2906, 1476, 1461, 1361, 1205, 1162, 1028, 869, 774. – MS (EI): m/z (%): 190 [M⁺] (2), 133 (88), 119 (29), 105 (30), 91 (52), 83 (35), 79 (39), 57 (53), 55 (100), 41 (68). – C_{13} H₁₈O (190.285): calcd. C 82.06, H 9.54; found C 82.18, H 9.37.

2-(3-*tert*-**Butylbicyclo[1.1.1]pent-1-yl)pyridine (4l):** The general procedure was followed. Starting from tetrahalide **2** (6.00 g, 20.2 mmol), propellane **1** was converted into Grignard reagent **5a** by reaction with *tert*-butylmagnesium chloride (13.0 mmol). The coupling reaction of **5a** with 2-bromopyridine (1.42 g, 8.99 mmol) and PdCl₂(dppf) (88 mg, 0.12 mmol) in 1,4-dioxane (25 mL) afforded **4l** (870 mg, 48%) as a colorless solid of m.p. 42 °C. – ¹H NMR (300 MHz, CDCl₃): δ = 0.91 (s, 9 H), 1.93 (s, 6 H), 7.20 (m, 2 H), 7.60 (m, 1 H), 8.54 (m, 1 H). – ¹³C NMR (75 MHz, CDCl₃): δ = 25.9 (q, 3 C), 29.4 (s), 39.8 (s), 47.2 (s), 48.2 (t, 3 C), 120.6 (d), 121.3 (d, 2 C), 136.1 (d, 2 C), 149.2 (d), 160.5 (s). – IR (KBr): \dot{v} = 2959 cm⁻¹, 2902, 2864, 1360, 1224, 1200, 833, 786, 760. – MS (EI): m/z (%): 186 (31), 144 (100), 117 (19), 78 (21). – C₁₄H₁₉N (201.3): calcd. C 83.53, H 9.51, N 6.96; found C 83.41, H 9.48, N 6.85.

1,3-Diphenylbicyclo[1.1.1]pentane (4m): The general procedure was followed. Starting from tetrahalide **2** (5.00 g, 16.8 mmol), propellane **1** was converted into Grignard reagent **5d** by reaction with phenylmagnesium bromide (10.8 mmol). The coupling reaction of **5d** with bromobenzene (1.57 g, 10.0 mmol) and PdCl₂(dppf) (147 mg, 0.201 mmol) in 1,4-dioxane (25 mL) afforded **4m** (1.80 g, 82%) as a colorless solid of m.p. $72\,^{\circ}$ C. $^{-1}$ H NMR (300 MHz, CDCl₃): δ = 2.32 (s, 6 H), 7.30 (m, 10 H). $^{-13}$ C NMR (75 MHz, CDCl₃): δ = 40.8 (s, 2 C), 54.0 (t, 3 C), 126.1 (d, 2 C), 126.6 (d, 4 C), 128.2 (d, 4 C), 140.9 (s, 2 C). $^{-1}$ IR (KBr): \tilde{v} = 3055 cm⁻¹, 3025, 2966, 2939, 2905, 2865, 1600, 1493, 1304, 1184, 1025, 765. $^{-1}$ MS (EI): m/z (%): 220 [M⁺] (45), 219 (100), 205 (17), 143 (30), 115 (31), 103 (49), 91 (42), 77 (53), 51 (19). $^{-1}$ C $^{-1}$ C $^{-1}$ H₁₆ (220.3): calcd. C 92.68, H 7.32; found C 92.58, H 7.57.

4-Chloro-1-(3-phenylbicyclo[1.1.1]pent-1-yl)benzene (4n): The general procedure was followed. Starting from tetrahalide **2** (5.00 g, 16.8 mmol), propellane **1** was converted into Grignard reagent **5d** by reaction with phenylmagnesium bromide (10.8 mmol). The coupling reaction of **5d** with 1-bromo-4-chlorobenzene (1.43 g,

7.47 mmol) and PdCl₂(dppf) (132 mg, 0.180 mmol) in 1,4-dioxane (25 mL) afforded **4n** (1.65 g, 87%) as a white solid of m.p. 142 °C. $^{-1}$ H NMR (300 MHz, CDCl₃): $\delta = 2.31$ (s, 6 H), 7.30 (m, 9 H). $^{-13}$ C NMR (75 MHz, CDCl₃): $\delta = 40.3$ (s), 40.8 (s), 54.0 (t, 3 C), 126.1 (d), 126.6 (d, 2 C), 127.6 (d, 2 C), 128.2 (d, 2 C), 128.3 (d, 2 C), 132.3 (s), 139.4 (s), 140.6 (s). $^{-}$ IR (KBr): $\tilde{v} = 2964$ cm $^{-1}$, 2939, 2905, 2866, 1488, 1396, 1301, 1182, 1091, 835. $^{-}$ MS (EI): m/z (%): 254 [M $^{+}$] (6), 219 (96), 115 (98), 103 (63), 101 (54), 91 (100), 77 (97), 75 (52), 51 (87), 39 (52). $^{-}$ C $_{17}$ H $_{15}$ Cl (254.8): calcd. C 80.15, H 5.93, Cl 13.92; found C 79.93, H 6.29, Cl 13.91.

1-(3-Phenylbicyclo[1.1.1]pent-1-yl)-4-(trifluoromethyl)benzene (40): The general procedure was followed. Starting from tetrahalide **2** (5.00 g, 16.8 mmol), propellane **1** was converted into Grignard reagent **5d** by reaction with phenylmagnesium bromide (10.8 mmol). The coupling reaction of **5d** with 1-bromo-4-(trifluoromethyl)benzene (2.03 g, 9.02 mmol) and PdCl₂(dppf) (147 mg, 0.201 mmol) in 1,4-dioxane (25 mL) afforded **4o** (1.89 g, 73%) as a white solid of m.p. 115 °C. $^{-1}$ H NMR (300 MHz, CDCl₃): δ = 2.35 (s, 6 H), 7.30 (m, 8 H), 7.56 (d, 2 H). $^{-13}$ C NMR (75 MHz, CDCl₃): δ = 40.5 (s), 41.0 (s), 54.0 (t, 3 C), 125.5 (q), 125.13 (d), 126.1 (d), 126.6 (d, 2 C), 128.3 (d, 4 C), 128.3 (d, 2 C), 140.4 (s), 144.8 (s). $^{-1}$ R (KBr): \tilde{v} = 2979 cm $^{-1}$, 2911, 2874, 1407, 1324, 1300, 1188, 1070, 851. $^{-1}$ MS (EI): m/z (%): 288 [M $^{+}$] (10), 219 (25), 151 (35), 128 (41), 115 (69), 91 (78), 77 (100), 51 (64), 39 (44). $^{-1}$ C₁₈H₁₅F₃ (288.3): calcd. C 74.99, H 5.24; found C 74.71, H 5.63.

2. Multiple Coupling Reactions

2,6-Bis(3-*tert***-butylbicyclo[1.1.1]pent-1-yl)pyridine (12a):** According to the general procedure, tetrahalide **2** (5.00 g, 16.8 mmol) was converted into **1**, which was allowed to react with *tert*-butylmagnesium chloride (10.8 mmol). Reaction of the solution of **5a** with 1,6-dibromopyridine (1.13 g, 5.07 mmol) and $PdCl_2(dppf)$ (132 mg, 0.18 mmol) in 1,4-dioxane (25 mL) afforded, after standard workup and purification, **12a** (330 mg, 20%) as a white solid of m.p. $165\,^{\circ}C$. $-\,^{1}H$ NMR (300 MHz, CDCl₃): $\delta=0.90$ (s, 18 H), 1.89 (s, 12 H), 6.98 (d, 2 H), 7.48 (t, 1 H). $-\,^{13}C$ NMR (75 MHz, CDCl₃): $\delta=26.0$ (q, 6 C), 29.4 (s, 2 C), 40.0 (s, 2 C), 47.1 (s, 2 C), 48.3 (t, 6 C), 117.9 (d), 135.7 (d, 2 C), 159.9 (s, 2 C). - IR (KBr): $\bar{v}=2952$ cm $^{-1}$, 2928, 2905, 2865, 1585, 1569, 1458, 1359, 1200, 830. - MS (EI): m/z (%): 323 [M $^{+}$] (2), 308 (20), 252 (21), 210 (29), 182 (20), 168 (37), 91 (20), 57 (61), 55 (60), 41 (100). - C $_{23}H_{33}N$ (323.5): calcd. C 85.39, H 10.28, N 4.33; found C 85.10, H 9.94, N 4.33.

1,4-Bis(3-*tert***-butylbicyclo[1.1.1]pent-1-yl)benzene (10a):** According to the general procedure, tetrahalide **2** (6.00 g, 20.2 mmol) was converted into **1**, which was allowed to react with *tert*-butylmagnesium chloride (13.0 mmol). Reaction of the solution of **5a** with 1,4-dibromobenzene (944 mg, 4.00 mmol) and $PdCl_2(dppf)$ (176 mg, 0.24 mmol) in 1,4-dioxane (25 mL) afforded, after standard workup and purification, **10a** (1.16 g, 90%) as a white solid of m.p. 280 °C. - ¹H NMR (300 MHz, CDCl₃): δ = 0.89 (s, 18 H), 1.80 (s, 12 H), 7.16 (s, 4 H). - ¹³C NMR (75 MHz, CDCl₃): δ = 26.0 (q, 6 C), 29.4 (s, 2 C), 38.7 (s, 2 C), 46.9 (s, 2 C), 48.5 (t, 6 C), 128.8 (d, 4 C), 139.7 (s, 2 C). - IR (KBr): \tilde{v} = 2959 cm⁻¹, 2947, 2903, 2865, 1359, 1211, 1201, 790, 775. - MS (EI): m/z (%): 322 [M⁺] (1), 265 (25), 208 (18), 83 (33), 67 (24), 57 (73), 41 (100). - C₂₄H₃₄ (322.5): calcd. C 89.37, H 10.63; found C 89.59, H 11.01.

1,4-Bis(3-isopropylbicyclo[1.1.1]pent-1-yl)benzene (10c): According to the general procedure, tetrahalide **2** (5.00 g, 16.8 mmol) was converted into **1**, which was allowed to react with 2-propylmagnesium chloride (10.8 mmol). Reaction of the solution of **5c** with 1,4-dibromobenzene (710 mg, 3.01 mmol) and PdCl₂(dppf) (132 mg, 0.18 mmol) in 1,4-dioxane (25 mL) afforded, after standard workup and purification, **10c** (821 mg, 93%) as a white solid of m.p. 183 °C.

Table 2. Crystal data for compounds 4a, 4d, 4j and 4n

	4a	4d	4 j	4n
Empirical formula	$C_{15}H_{20}$	C ₁₅ H ₁₉ Cl	C ₁₇ H ₂₆ Si	C ₁₇ H ₁₅ Cl
$M_{ m r}$.	200.21	234.75	258.47	254.74
a [A]	5.9395(8)	6.0011(14)	23.098(4)	5.878(2)
a [Å] b [Å] c [Å] α [°] β [°]	7.4457(14)	12.642(3)	6.0914(6)	7.502(2)
c[A]	27.610(4)	18.851(4)	23.883(4)	15.342(4)
α [°]	90	109.14(3)	90	90
β [°]	90	97.76(3)	103.358(19)	96.61(3)
γ [°] Z	90	93.17(3)	90 8	90
	4	4	8	2
$D [\mathrm{Mg/m^3}]$	1.090	1.171	1.050	1.259
crystal system	orthorhombic	triclinic	monoclinic	monoclinic
space group	$P2_12_12_1$	P-1	I 2/a	$P 2_1/c$
crystal size [mm]	$0.72 \times 0.36 \times 0.20$	$1.00 \times 0.28 \times 0.08$	0.80 imes 0.44 imes 0.08	$0.80 \times 0.48 \times 0.12$
θ range [°]	2.83 - 25.24	2.32 - 25.25	$2.21\!-\!25.24$	3.49 - 25.50
measured reflns.	7192	8874	9238	3074
independent reflns.	2198	4521	2953	1165
μ [mm ⁻¹]	0.061	0.259	0.128	0.263
max./min. transmission	0.9880/0.9577	0.9796/0.7816	0.9899/0.9048	0.979/0.854
parameters	216	441	168	101
F(000)	440	504	1136	268
GoF	1.034	1.020	1.044	1.128
max. $\Delta \rho$ [eÅ $^{-3}$] $R1^{[a]}$	0.150	0.388	0.406	0.501
$R1^{[a]}$	0.0287	0.0336	0.0456	0.0863
$wR2^{[b]}$	0.0760	0.0882	0.1268	

 ^{-1}H NMR (300 MHz, CDCl₃): $\delta=0.88$ (d, 12 H), 1.75 (m, 2 H), 1.80 (s, 12 H), 7.16 (s, 4 H). ^{-13}C NMR (75 MHz, CDCl₃): $\delta=18.8$ (q, 4 C), 28.4 (d, 2 C), 40.2 (s, 2 C), 43.5 (s, 2 C), 49.6 (t, 6 C), 125.8 (d, 4 C), 139.7 (s, 2 C). ^{-1}R (KBr): $\tilde{v}=2960$ cm $^{-1}$, 2959, 2926, 2901, 2863, 1461, 1360, 1268, 1175, 842. ^{-1}MS (EI): m/z (%): 251 (28), 183 (26), 115 (34), 109 (25), 83 (44), 69 (41), 67 (46), 55 (27), 43 (38), 41 (100). ^{-1}MS C22H (294.5): calcd. C 89.73, H 10.27; found C 89.35, H 10.19.

1,3-Bis(3-tert-butylbicyclo[1.1.1]pent-1-yl)-5-(trimethylsilyl)benzene (11a): According to the general procedure, tetrahalide 2 (7.50 g, 25.3 mmol) was converted into 1, which was allowed to react with tert-butylmagnesium chloride (18.0 mmol). Reaction of the solution of 5a with 1,3-dibromo-5-(trimethylsilyl)benzene (1.54 g, 5.00 mmol) and PdCl₂(dppf) (103 mg, 0.14 mmol) in 1,4-dioxane (25 mL) afforded, after standard workup and purification, 11a (1.52 g, 77%) as a white solid of m.p. 128 $^{\circ}\text{C.}$ - ^{1}H NMR $(300 \text{ MHz}, \text{CDCl}_3)$: $\delta = 0.26 \text{ (s, 9 H)}, 0.89 \text{ (s, 18 H)}, 1.83 \text{ (s, 12 H)}$ H), 7.08 (s, 1 H), 7.21 (s, 2 H). - ¹³C NMR (75 MHz, CDCl₃): $\delta = -1.1$ (q, 3 C), 26.0 (q, 6 C), 29.5 (s, 2 C), 35.7 (s, 2 C), 41.2 (s, 2 C), 48.5 (t, 6 C), 128.7 (d, 3 C), 133.5 (s), 140.7 (s, 2 C). – IR (KBr): $\tilde{v} = 2954 \text{ cm}^{-1}$, 2903, 2866, 1473, 1359, 1280, 1243, 1200, 1147, 974, 855, 752. – MS (EI): m/z (%): 337 (23), 97 (7), 83 (19), 73 (100), 57 (17), 55 (13), 41 (15). - C₂₇H₄₂Si (394.7): calcd. C 82.16, H 10.73; found C 81.97, H 10.60.

1,3-Bis(3-cyclohexylbicyclo[1.1.1]pent-1-yl)-5-(trimethylsilyl)benzene (11b): According to the general procedure, tetrahalide **2** (7.50 g, 25.3 mmol) was converted into **1**, which was allowed to react with cyclohexylmagnesium chloride (18.0 mmol). Reaction of the solution of **5b** with 1,3-dibromo-5-(trimethylsilyl)benzene (1.23 g, 3.99 mmol) and PdCl₂(dppf) (220 mg, 0.30 mmol) in 1,4-dioxane (25 mL) afforded, after standard workup and purification, **11b** (1.60 g, 90%) as a white solid of m.p. $112\,^{\circ}$ C. $^{-1}$ H NMR (300 MHz, CDCl₃): $\delta = 0.25$ (s, 9 H), 0.70–1.80 (m, 22 H), 1.82 (s, 12 H), 7.05 (s, 1 H), 7.21 (s, 2 H). $^{-13}$ C NMR (75 MHz, CDCl₃): $\delta = -1.1$ (q, 3 C), 26.1 (t, 2 C), 26.4 (t, 4 C), 29.4 (t, 4

C), 38.0 (d, 2 C), 40.7 (s, 2 C), 42.6 (s, 2 C), 49.9 (t, 6 C), 128.7 (d), 124.3 (d, 2 C), 139.9 (s), 140.8 (s, 2 C). – IR (KBr): $\tilde{\nu}=2957$ cm $^{-1}$, 2921, 2903, 2860, 1444, 1257, 1244, 873, 856, 756. – MS (EI): m/z (%): 122 (5), 109 (31), 93 (21), 82 (27), 81 (34), 79 (32), 67 (100), 55 (50), 41 (60). – C₃₁H₄₆Si (446.8): calcd. C 83.34, H 10.38; found C 83.31, H 10.38.

1,3,5-Tris(3-*tert***-butylbicyclo[1.1.1]pent-1-yl)benzene (8a):** According to the general procedure, tetrahalide **2** (7.50 g, 25.3 mmol) was converted into **1**, which was allowed to react with *tert*-butylmagnesium chloride (18.0 mmol). Reaction of the solution of **5a** with 1,3,5-tribromobenzene (1.02 g, 3.24 mmol) and PdCl₂(dppf) (205 mg, 0.28 mmol) in 1,4-dioxane (25 mL) afforded, after standard workup and purification, **8a** (1.41 g, 98%) as a white solid of m.p. 309 °C. $^{-1}$ H NMR (300 MHz, CDCl₃): δ = 0.89 (s, 27 H), 1.82 (s, 18 H), 6.91 (s, 3 H). $^{-13}$ C NMR (75 MHz, CDCl₃): δ = 26.0 (q, 9 C), 29.4 (s, 3 C), 38.9 (s, 3 C), 46.9 (s, 3 C), 48.8 (t, 9 C), 121.6 (d, 3 C), 141.6 (s, 3 C). $^{-1}$ R (KBr): \dot{v} = 2904 cm $^{-1}$, 2865, 1599, 1473, 1460, 1360, 1224, 879. $^{-1}$ MS (EI): *m/z* (%): 387 (32), 123 (32), 97 (61), 82 (2), 57 (83), 55 (59), 41 (53). $^{-1}$ C $^{-1$

1,3,5-Tris(3-*tert*-butylbicyclo[1.1.1]pent-1-yl)benzene (8a) and 5-Bromo-1,3-bis(3-*tert*-butylbicyclo[1.1.1]pent-1-yl)benzene (9a): According to the general procedure, tetrahalide **2** (10.0 g, 33.7 mmol) was converted into **1**, which was allowed to react with *tert*-butyl-magnesium chloride (23.0 mmol). Reaction of the solution of **5a** with 1,3,5-tribromobenzene (1.90 g, 6.04 mmol) and PdCl₂(dppf) (205 mg, 0.28 mmol) in 1,4-dioxane (25 mL) afforded, after standard workup and purification, **8a** (990 mg, 37%) as a white solid of m.p. 309 °C and **9a** (1.02 g, 42%) as colorless needles (from acetone) of m.p. 98 °C. – **9a**: 1 H NMR (300 MHz, CDCl₃): δ = 0.89 (s, 18 H), 1.81 (s, 12 H), 7.26 (s, 2 H), 7.48 (s, 1 H). – 13 C NMR (75 MHz, CDCl₃): δ = 25.9 (q, 6 C), 29.4 (s, 2 C), 38.3 (s, 2 C), 48.6 (s, 2 C), 48.7 (t, 6 C), 122.2 (d, 2 C), 128.2 (d), 131.7 (s), 145.8 (s). – IR (KBr): \tilde{v} = 2904 cm $^{-1}$, 2865, 1599, 1460, 1444, 1360, 1281, 1198, 879. – MS (EI): m/z (%): 343 (10), 315 (18), 301 (80),

222 (35), 141 (42), 115 (39), 83 (100), 57 (95). - C₂₄H₃₃Br (401.4): calcd. C 71.81, H 8.29, Br 19.90; found C 71.49, H 8.23, Br 19.88.

1,3,5-Tris(3-cyclohexylbicyclo[1.1.1]pent-1-yl)benzene (8b): According to the general procedure, tetrahalide 2 (7.50 g, 25.3 mmol) was converted into 1, which was allowed to react with cyclohexylmagnesium chloride (18.0 mmol). Reaction of the solution of ${\bf 5b}$ with 1,3,5-tribromobenzene (950 mg, 3.02 mmol) and $PdCl_2(dppf)$ (220 mg, 0.30 mmol) in 1,4-dioxane (25 mL) afforded, after standard workup and purification, 8b (1.50 g, 95%) as a white solid of m.p. $245\,^{\circ}$ C. $- {}^{1}$ H NMR (300 MHz, CDCl₃): $\delta = 0.80 - 1.80$ (m, 33 H), 1.80 (s, 18 H), 6.89 (s, 3 H). - ¹³C NMR (75 MHz, CDCl₃): δ = 26.1 (t, 3 C), 26.3 (t, 6 C), 29.6 (t, 6 C), 35.4 (s, 3 C), 38.0 (d, 3 C), 42.6 (s, 3 C), 49.9 (t, 9 C), 121.6 (d, 3 C), 141.5 (s, 3 C). -IR (KBr): $\tilde{v} = 2959 \text{ cm}^{-1}$, 2921, 2863, 2850, 1598, 1446, 1257, 703. - MS (EI): m/z (%): 522 [M⁺] (1), 149 (32), 133 (11), 109 (100), 67 (90), 55 (76), 41 (50). - C₃₉H₅₄ (522.9): calcd. C 89.59, H 10.41; found C 89.51, H 10.23.

X-ray Crystallographic Studies: Crystal data are given in Table 2. Crystals of 4a, 4d, and 4j suitable for X-ray diffraction analysis were prepared by crystallization from acetone at -20° C, while crystals of 4n were obtained from dichloromethane at -20 °C. The X-ray structures of 4a, 4d, 4j, and 4n were determined on a STOE Imaging Plate Diffraction System. Measurements were carried out at 180 K using graphite-monochromated Mo- K_{α} radiation (λ = 0.71073 A). Unit cell parameters were determined from leastsquares analyses of 1454 reflections (5.70° $< 2\theta < 52.2^{\circ}$) (4a), 5000 reflections (4.60° < 2 θ < 52.2°) (4d), 2115 reflections (5.00 < 2 θ < 50.2°) (4j), and 1095 reflections (5.40 < 2θ < 50.2°) (4n). Intensities were measured by ϕ -oscillation scans. The structures were solved by direct methods and refined anisotropically on F^2 (SHELX-97). [19] Hydrogen atoms were included isotropically in the full-matrix leastsquares refinement (4a, 4d, and 4j) or constrained as a riding model (4n).[20]

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support of this investigation.

- $^{[2]}$ K. M. Lynch, W. P. Dailey, Org. Synth. 1997, 75, 98–105. $^{[3]}$ K. B. Wiberg, D. S. Connor, G. Lampman, Tetrahedron Lett. **1964**, 531 – 534
- [4] D. E. Applequist, T. L. Renken, J. W. Wheeler, *J. Org. Chem.* **1982**, 47, 4985–4995.
- [5] K. B. Wiberg, S. T. Waddell, J. Am. Chem. Soc. 1990, 112,
- 2194–2216.

 [6] [6a] P. Kaszynsky, N. D. McMurdie, J. Michl, *J. Org. Chem.*1991, 56, 307–316. [6b] P. Kaszynsky, A. C. Friedli, J. Michl, J. Am. Chem. Soc. 1992, 114, 601–620.
- U. Bunz, W. Herpich, J. Podlech, K. Polborn, A. Pratzel, D. S. Stephenson, G. Szeimies, *J. Am. Chem. Soc.* **1994**, *116*, 7637 - 7641.
- [8] T. Ströter, O. Jarosch, G. Szeimies, Chem. Eur. J. 1999, 5, 1422-1431.
- E. W. Della, D. K. Taylor, J. Org. Chem. 1994, 59, 2986-2996.
 U. Bunz, K. Polborn, H.-U. Wagner, G. Szeimies, Chem. Ber. 1988, 121, 1785-1790, and references therein.
- [11] [11a] D. R. Whitman, J. F. Chiang, J. Am. Chem. Soc. **1972**, 94, 1126–1129. [11b] J.-M. Lehn, G. Wipf, Phys. Lett. **1972**, *15*, 450-454.
- [12] R. Gleiter, K.-H. Pfeifer, G. Szeimies, U. Bunz, Angew. Chem. **1990**, 102, 418–420, Angew. Chem. Int. Ed. Engl. **1990**, 29,
- [13] For oxidative coupling of 1-bicyclo[1.1.1]pentyl cuprates, see: C. Mazal, J. Paraskos, J. Michl, *J. Org. Chem.* **1998**, *63*, 2116 - 2119
- [14] A. Godt, Diploma Thesis, Universität München, 1988. G. Szeimies, in Strain and Its Implications in Organic Chemistry (Eds.: A. de Meijere, S. Blechert), Kluwer Academic Publishers, Dodrecht, **1989**, pp. 361–381. See also: A. de Meijere, M. Messner, V. Vill, *Mol. Cryst. Liq. Cryst.* **1994**, *257*, 161–167.
- E.-i. Negishi, F. Liu, in *Metal-Catalyzed Cross-Coupling Reactions* (Eds.: F. Diederich, P. J. Stang) Wiley-VCH, Weinheim, **1998**, pp. 1–47. See also M. Kumada, *Pure Appl. Chem.* **1980**, 669–679. K. Tamao, M. Kumada, *The Chemistry of the Metal Carbon Bond* (Ed.: F. R. Hartley), Wiley, New York, **1987**, p. 819.
- [17] T. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi, K. Hirotsu, J. Am. Chem. Soc. 1984, 106, 158-163
- [18] J. L. Adcock, A. A. Gakh, J. L. Pollite, C. Woods, J. Am. Chem. Soc. **1992**, 114, 3980-3981.
- [19] G. M. Sheldrick, SHELX-97, University of Göttingen, 1997.
- [20] Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC-116255 (for 4d), CCDC-116256 (for 4j), CCDC-116257 (for 4a), and CCDC-116258 (for 4n). Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. [Fax: (internat.) +44(0)1223 336033; E-mail: deposit@ccdc.cam.ac.uk].

Received March 15, 1999 [O99156]

 $^{^{[1]}}$ K. Semmler, G. Szeimies, J. Belzner, *J. Am. Chem. Soc.* **1985**, 107, 6410. — $^{[1b]}$ J. Belzner, U. Bunz, G. Szeimies, K. Opitz, A.-D. Schlüter, Chem. Ber. 1989, 122, 397-398.